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Introduction

Why Study Coreset for Deep Learning?

Data Explosion: Modern deep learning models are trained on increasingly large datasets
(e.g., ImageNet, OpenWebText), making training expensive and time-consuming.

Efficiency Bottleneck: High computational and memory costs limit the scalability of deep
models, especially on edge devices or under resource constraints.

Coreset Idea: A coreset is a small, representative subset of the original dataset that
preserves the model’s training behavior.

Potential Benefits:
▶ Faster training and inference
▶ Reduced storage and memory footprint
▶ Improved generalization through better data selection

Challenge: How to select informative and diverse samples that reflect both data
distribution and learning dynamics?

Hu Ding Coresets for DL May 7, 2025 3 / 65



Introduction

Coresets

Figure: The t-SNE visualization of coreset selection.

t-SNE1(t-Distributed Stochastic Neighbor Embedding) is a nonlinear dimensionality reduction
algorithm commonly used to embed high-dimensional data into 2D or 3D space for
visualization. Compared to linear methods like PCA, t-SNE is better at capturing complex
nonlinear structures such as clusters.

1Van der Maaten L, Hinton G. Visualizing data using t-SNE. Journal of machine learning research, 2008, 9(11)
Hu Ding Coresets for DL May 7, 2025 4 / 65



Coresets for Efficient Training of DL Greedy Algorithms

1 Introduction

2 Coresets for Efficient Training of DL
Greedy Algorithms
Example: CRAIG

3 Coresets for Improving Data Utilization of DL
Active Learning
Generative Models (GM)
Continual Learning

4 Coresets for Large Language Models
Coresets for Large Language Models

5 Challenges
Challenges

Hu Ding Coresets for DL May 7, 2025 5 / 65



Coresets for Efficient Training of DL Greedy Algorithms

Greedy Algorithms

Definition (Greedy Algorithm)
A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal
choice at each stagea.

aBlack, Paul E. (2 February 2005). “greedy algorithm”. Dictionary of Algorithms and Data Structures. U.S. National
Institute of Standards and Technology (NIST). Retrieved 17 August 2012.

Definition (Greedy Coreset Selection)
At each iteration (or epoch), the method appends the candidate samples that maximizes a task-specific
utility function, thereby striving to preserve the essential statistical or geometric characteristics of the full
dataset while substantially reducing its size.
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Coresets for Efficient Training of DL Greedy Algorithms

Greedy Coreset Selection in DL

Figure: Flowchart of greedy coreset selection in DL, where coreset selection is performed every T epochs
and the model is trained on the selected coreset.

1 Train on the entire dataset for T epochs (warm up).
2 Based on the parameters obtained after the T -th epoch, perform a greedy search over the

dataset to select a subset S of size k (how to select?).
3 Train on the selected subset S for T epochs, then return to Step 2. Repeat until the

algorithm converge.
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Coresets for Efficient Training of DL Greedy Algorithms

Foundations of Greedy Selection

Dataset.
Let D = {(xi , yi )}Ni=1 denote a dataset, where each (xi , yi ) corresponds to an instance and
its associated label or target.

Set Function.
Consider a set function f : 2D → R that assigns a non-negative utility score f (S) to any
subset S ⊆ D. The function f is assumed to reflect task-specific objectives.

Objective.
The goal is to construct a representative subset S ⊆ D of fixed cardinality k, referred to as
a greedy coreset, which approximately maximizes the utility function f (S).

Marginal Gain.
At each selection step, the algorithm identifies the element x ∈ D \ S that maximizes the
marginal gain:

Δf (x | S) = f (S ∪ {x}) − f (S),

where Δf (x | S) quantifies the incremental benefit of adding x to the current subset S.
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Coresets for Efficient Training of DL Greedy Algorithms

Algorithm Procedure

Algorithm Generic greedy coreset construction

Input: Dataset D, utility function f , target size k
1: Initialize S← S0 /* optional warm start */
2: while |S | < k do
3: x★← argmaxx∈D\S Δf (x | S)
4: S← S ∪ {x★}
5: end while
6: return S
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Coresets for Efficient Training of DL Greedy Algorithms

Cardinality Constrained Monotone Submodular Maximization (CCMSM)

Definition (Submodular Function)
A set function f : 2D → R, defined over a finite ground setD, is called submodular function if it
satisfies

f (A ∪ {x}) − f (A) ≥ f (B ∪ {x}) − f (B) (1)

for all subsets A ⊆ B ⊆ D and any element x ∉ B. (diminishing returns property)

Definition (CCMSM)
The cardinality-constrained monotone submodular maximization problem can be defined as
follows:

max
S⊆D: |S |≤k

f (S). (2)
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Coresets for Efficient Training of DL Greedy Algorithms

Theoretical guarantee

If f is monotone submodular function (i.e., f (A) ≤ f (B) whenever A ⊆ B) and normalized (i.e.,
f (∅) = 0), then the classical result by Nemhauser et al.2 guarantees that Alg. 1 achieves the
well-known (1 − 1/e) approximation ratio.

Theorem (Nemhauser et al.)

Given a non-negative monotone submodular function f : 2D → R and the subsets {Si }i≥0
extracted by Algorithm 1, we have, for all non-negative integers k, l:

f (Sl ) ≥
(
1 − exp

(
− l

k

))
max

S: |S | ≤k
f (S), (3)

and in particular, when l = k,

f (Sk ) ≥
(
1 − 1

e

)
max

S: |S | ≤k
f (S). (4)

2Nemhauser, George L., Laurence A. Wolsey, and Marshall L. Fisher. ”An analysis of approximations for maximizing
submodular set functions-I.” Mathematical programming 14 (1978): 265-294.
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Coresets for Efficient Training of DL Example: CRAIG

CRAIG

Figure: 1Department of Computer Science, University of California, Los Angeles, USA 2Department of
Electrical Engineering, University of Washington, Seattle, USA 3Department of Computer Science,
Stanford University, Stanford, USA. Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020.
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Coresets for Efficient Training of DL Example: CRAIG

Setting

Training Machine Learning Models

Often reduces to minimizing a regularized empirical risk function

Examples:

Convex f (w): Linear regression, logistic regression, ridge regression, regularized support
vector machines (SVM)
Non-convex f (w): Neural networks
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Coresets for Efficient Training of DL Example: CRAIG

Problem

How to Find the “Right” Data for Machine Learning?

The most informative subset

S∗ = arg max
S⊆V

F (S), s.t. |S | ≤ k

What is a good choice for F (S)?
If we can find S∗, we get a approximate |V |/|S∗ | speedup by only training on S∗
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Coresets for Efficient Training of DL Example: CRAIG

Learning from Coresets

Idea: select the smallest subset S∗ and weights 𝛾 that closely estimate the full gradient.

S∗ = arg min
S⊆V , 𝛾j≥0 ∀j

|S |, s.t. max
w∈W

∑︁i∈V ∇fi (w) −
∑︁
j∈S

𝛾j∇fj (w)

 ≤ 𝜖

Solution: for every w ∈ W, S∗ is the set of exemplars of all the data points in the gradient
space.
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Coresets for Efficient Training of DL Example: CRAIG

Application of CRAIG to Logistic Regression

Training on subsets of size 10% of Covtype with 581K points
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Coresets for Efficient Training of DL Example: CRAIG

Application of CRAIG to Neural Networks

Training on MNIST with a 2-layer neural network with 50K points

Figure: Test accuracy and training loss of SGD applied to subsets found by CRAIG vs. random subsets on
MNIST with a 2-layer neural network. CRAIG provides 2x to 3x speedup and a better generalization
performance.
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Coresets for Efficient Training of DL Example: CRAIG

Application of CRAIG to Deep Networks

Training ResNet20 on subsets of various size from CIFAR10 with 50K points

Figure: Test accuracy vs. fraction of data selected during training of ResNet20 on CIFAR10. (a) At the
beginning of ever epoch, a new subset of size 1%, 2%, 3%, 4%, 5%, 10%, or 20% is selected by CRAIG. (b)
Every 5 epochs a new subset of similar size is selected by CRAIG. SGD is then applied to training on the
selected subsets.
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Coresets for Improving Data Utilization of DL Active Learning

Conventional (Passive) Machine Learning

Can we train machines with less labeled data and less human supervision?
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Coresets for Improving Data Utilization of DL Active Learning

Active Learning (Pool-based)

Definition
Active learninga refers to the process of strategically selecting and labeling the most
informative and representative samples from an unlabeled dataset to maximize learning
efficiency and model accuracy.

aSettles, Burr. ”Active learning literature survey.” (2009).

Target Model

Annotator

Unlabeled Dataset

Labeled Dataset

Score

Select

Train

Add

 

data

importance

Figure: Pool-based active learning repeatedly executes four key steps: (1) training the target model using the
labeled data, (2) scoring the importance of unlabeled examples and selecting the most important ones, (3)
obtaining annotations for the selected examples from annotators, and (4) incorporating the newly labeled
data into the existing labeled dataset.
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Coresets for Improving Data Utilization of DL Active Learning

Coreset Selection in AL

Based on the criteria for evaluating the importance of unlabeled examples, we categorize active
learning approaches into three types: Loss-Based Methods (Importance); Coverage-Based
Methods (Diversity); Hybrid Methods.
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Coresets for Improving Data Utilization of DL Active Learning

Coresets for AL

3

3Sener, Ozan, and Silvio Savarese. ”Active Learning for Convolutional Neural Networks: A Core-Set Approach.”
International Conference on Learning Representations. 2018.
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Coresets for Improving Data Utilization of DL Active Learning

Coresets for AL

Coreset selection problem:
Coreset selection problem aims to find a small subset given a large labeled dataset such that
a model learned over the small subset is competitive over the whole dataset.

selects a batch of samples:
choose “b” center points such that the largest distance between a data point and its
nearest center is minimized in feature space.

min
s: |s | ≤b

max
i

min
j∈s

Δ(xi , xj )
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Coresets for Improving Data Utilization of DL Active Learning

Experiments

Datasets: CIFAR-10, CIFAR-100, Caltech-256, SVHN
1 The weakly-supervised model has access to labeled examples as well as unlabelled

examples.
2 The fully-supervised model only has access to the labeled data points.
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Coresets for Improving Data Utilization of DL Generative Models (GM)

Generative Models

Given training data, generate new samples from same distribution

Objectives:
1 Learn pmodel (x) that approximates pdata (x)
2 Sampling new x from pmodel (x)

Taxonomy of Generative Models
1 Generative Adversarial Networks (GAN)
2 Diffusion Models
3 Variational Autoencoders (VAE)
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Coresets for Improving Data Utilization of DL Generative Models (GM)

Coreset selection in GM
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Coresets for Improving Data Utilization of DL Generative Models (GM)

Variational Autoencoder (VAE)

VAE: a likelihood-based generative model

Encoder: a model that approximates the posterior q(z |x)
Decoder: a model that transforms a Gaussian variable z to real data
Training: maximize the ELBO

L(𝜃, 𝜙; x) = Ez∼q𝜙 (z |x ) [log p𝜃 (x |z)] − DKL
(
q𝜙 (z |x) ∥ p𝜃 (z)

)
,
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Coresets for Improving Data Utilization of DL Generative Models (GM)

Diffusion Model

Denoising Diffusion Probabilistic Models (DDPM)4

1 Diffusion models have two processes
2 Forward diffusion process gradually adds noise to input
3 Reverse denoising process learns to generate data by denoising

4Ho, Jonathan, Ajay Jain, and Pieter Abbeel. ”Denoising diffusion probabilistic models.” Advances in neural
information processing systems 33 (2020): 6840-6851.
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Coresets for Improving Data Utilization of DL Generative Models (GM)

Forward Diffusion Process

1 Forward diffusion process is stacking fixed VAE encoders
▶ gradually adding Gaussian noise according to schedule 𝛽t

q (xt | xt−1 ) = N
(
xt ;

√︁
1 − 𝛽txt−1, 𝛽t I

)
q (x1:T | x0 ) =

T∏
t=1

q (xt | xt−1 )

2 The forward process allows sampling of xt at arbitrary timestep t in closed form:

q (xt | x0 ) = N
(
xt ;

√︁
�̄�tx0, (1 − �̄�t )I

)
�̄�t =

t∏
s=1
(1 − 𝛽s )

xt =
√︁
�̄�tx0 +

√︁
1 − �̄�t 𝝐 , 𝝐 ∼ N(0, I)

3 The noise schedule (𝛽t values) is designed such that q (xT | x0 ) ≈ N(xT ;0, I)
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Coresets for Improving Data Utilization of DL Generative Models (GM)

Reverse Denoising Process

1 Generation process
▶ Sample xt ∼ N(xT ;0, I)
▶ Iteratively sample xt−1 ∼ q (xt−1 |xt )

2 q (xt−1 |xt ) not directly tractable
3 But can be estimated with a Gaussian distribution if 𝛽t is small at each step
4 Reverse diffusion process is stacking learnable VAE decoders

▶ Predicting the mean and std of added Gaussian Noise

p(xT ) = N(xT ;0, I) p𝜃 (x0:T ) = p(xT )
T∏

t=1
p𝜃 (xt−1 | xt )

p𝜃 (xt−1 | xt ) = N(xt−1; 𝜇𝜃 (xt , t ) , 𝜎2
t I)︸              ︷︷              ︸

Trainable Network, Shared Across All Timesteps

Hu Ding Coresets for DL May 7, 2025 33 / 65



Coresets for Improving Data Utilization of DL Generative Models (GM)

Learning the Denoising Model

1 Denoising models are trained with variational upper bound (negative ELBO), as VAEs

Eq (x0 ) [− log p𝜃 (x0 ) ] ≤ Eq (x0 )q (x1:T |x0 )

[
− log p𝜃 (x0:T )

q (x1:T | x0 )

]
=: L

2 In DDPM, this is further simplified to:

L = Ex0∼q (x0 ) , 𝝐∼N(0,I) , t∼U(1,T )


𝝐 − 𝝐 𝜃

©«
√︁
�̄�tx0 +

√︁
1 − �̄�t𝝐︸                   ︷︷                   ︸

xt

, t
ª®®®®¬


2
3 Summary: Training and Sampling
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Coresets for Improving Data Utilization of DL Generative Models (GM)

Generative Adversarial Networks (GANs)

A method of training deep generative models
Idea: A generator and a discriminator against each other
Generator tries to draw samples from pmodel (x)
Discriminator tries to tell if sample came from the generator or the real world
Both discriminator and generator are deep networks (differentiable functions)
Can train with backprop: train discriminator for a while, then train generator, then
discriminator, . . .
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Coresets for Improving Data Utilization of DL Generative Models (GM)

Generative Adversarial Networks (GAN)

GAN’s Architecture5

(a) Generator (usually a DNN) (b) Discriminator (usually a CNN)

5slideshare.net/slideshow/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-
2016/64667744
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Coresets for Improving Data Utilization of DL Generative Models (GM)

Small-GAN: Speeding Up GAN Training Using Core-sets6

1 Training with very large mini-batches has been shown to significantly improve
performance [Brock et al. (2018)].

2 But using large batches is slow and expensive.

Batch-Sizes 256 512 1024 2048

FID 18.65 15.30 14.88 12.39

How can we use large batch-size without overhead cost?

If we could generate batches that were effectively large though actually small.

6Sinha, Samarth, et al. “Small-gan: Speeding up gan training using core-sets.” International Conference on Machine
Learning. PMLR, 2020.
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Coresets for Improving Data Utilization of DL Generative Models (GM)

GreedyCoreset

Setting: In computational geometry, a Coreset Q of a set P is a subset Q ⊂ P that approximates
the ‘shape’ of P [Agarwal et al., 2005].

The Coreset selection problem can be formulated as the minimax facility location formulation:

min
Q: |Q |=k

max
xi ∈P

min
xj ∈Q

d (xi , xj )

Exact solution to set-covers is NP-Hard
We can use Greedy Approximations
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Coresets for Improving Data Utilization of DL Generative Models (GM)

Small-GAN

Q: Why use Inception embeddings 𝜙I (·)?
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Coresets for Improving Data Utilization of DL Generative Models (GM)

Small-GAN

Q: Why use Inception embeddings 𝜙I (·)?
A: Running GreedyCoreset on images is ineffective because of noise and high dimensionality
[Donoho et al., 2000]. Inception embeddings of images are cheap and effective
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Coresets for Improving Data Utilization of DL Generative Models (GM)

Experiments:CIFAR10

Small-GAN significantly outperforms regular GAN training at all batch-sizes

Figure: FID scores for CIFAR using SN-GAN
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Coresets for Improving Data Utilization of DL Generative Models (GM)

Experiments:LSUN+ImageNet

Small-GAN able to scale well to large scale settings

Small-GAN (64) GAN (64) GAN (128) GAN (256)

13.08 14.82 13.02 12.63

Table: FID scores using SAGAN for LSUN dataset

GAN Small-GAN

19.40 17.33

Table: FID scores using SAGAN for ImageNet dataset
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Coresets for Improving Data Utilization of DL Continual Learning

Continual Learning (Experience rehearsal based or Coreset based)

Figure: Overview of the coreset-based method for continual learning. This approach aims to approximate
and recover previous data distributions by storing a small subset of past training samples in a limited
memory buffer. By leveraging this stored subset, the method helps mitigate catastrophic forgetting, ensuring
that the model retains knowledge from earlier learning phases while adapting to new data.
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Coresets for Improving Data Utilization of DL Continual Learning

Coresets in CL
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Coresets for Improving Data Utilization of DL Continual Learning

Gradient-free strategies

1 Reservoir Sampling

2 Ring Buffer

3 Herding
4 k-Means
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Coresets for Improving Data Utilization of DL Continual Learning

Gradient-driven strategies

7

7Yoon, Jaehong, et al. ”Online Coreset Selection for Rehearsal-based Continual Learning.” International Conference on
Learning Representations.
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Coresets for Improving Data Utilization of DL Continual Learning

OCS

Figure: Illustration of existing rehearsal-based CL and Online Coreset Selection (OCS).

Existing rehearsal-based methods train on all the arrived instances and memorize a fraction
of them in the replay buffer, which results in a suboptimal performance due to the outliers
(noisy or biased instances).
OCS obtains the coreset by leveraging our three selection strategies, which discard the
outliers at each iteration.
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Coresets for Improving Data Utilization of DL Continual Learning

Three Different Selection Strategies

Let bt ,n = {xt ,n, yt ,n} ∈ Bt denote the n-th pair of data point with gradient ∇fΘ (bt ,n) and its
corresponding label at task Tt .

1 Minibatch similarity

S(bt ,n | Bt ) =
∇fΘ (bt ,n) ∇̄fΘ (Bt )⊤∇fΘ (bt ,n)

 · ∇̄fΘ (Bt )
 .

2 Sample diversity

V(bt ,n | Bt \ bt ,n) =
−1

Nt − 1

Nt−1∑︁
p≠n

∇fΘ (bt ,n) ∇fΘ (bt ,p)⊤∇fΘ (bt ,n)
 · ∇fΘ (bt ,p)

 .
3 Coreset affinity

A(bt ,n | BC ∼ C) =
∇fΘ (bt ,n) ∇̄fΘ (BC)⊤∇fΘ (bt ,n)

 · ∇̄fΘ (BC)
 .
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Algorithm
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Coresets for Improving Data Utilization of DL Continual Learning

Experiments

The imbalanced setting contains a different number of training examples for each class in a task.

Figure: (a) Average accuracy (b) First task accuracy for balanced/imbalanced Rotated MNIST during CL.

Figure: Performance comparison on various coreset sizes for balanced/imbalanced continual learning
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Coresets for Large Language Models Coresets for Large Language Models

Introduction

Large Language Models (LLMs) are a type of advanced AI models designed to understand
and generate human languages.
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Coresets for Large Language Models Coresets for Large Language Models

Efficient LLMs

Although LLMs are leading the next wave of AI revolution, their remarkable capabilities come
at substantial resource demands

Figure: Illustration of model performance and model training time in GPU hours of LLaMA models at
different scales.
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Coresets for Large Language Models Coresets for Large Language Models

Coresets in LLMs

Coreset selection is a fundamental technique for enhancing efficiency. As summarized in Figure
below, in the context of LLMs, coreset selection techniques have been primarily used for
enhancing the efficiency of pretraining and fine-tuning.

Figure: Illustrations of coreset selection techniques for LLMs.

Figure: Summary of coreset selection techniques for LLMs.
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CoLM
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CoLM

How to reduce GPU memory requirement in LLM?
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Coresets for Large Language Models Coresets for Large Language Models

CoLM

How to reduce GPU memory requirement in LLM?

It’s possible to stack three different approaches together.
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Coresets for Large Language Models Coresets for Large Language Models

CoLM

(Mini-batch) coreset selection

Training with larger mini-batch has a small variance, thus convergences faster

A mini-batch coreset is a subset that has the similar gradient to the original mini-batch.
Thus, it can be found by solving the gradient matching problem

Hu Ding Coresets for DL May 7, 2025 59 / 65



Coresets for Large Language Models Coresets for Large Language Models

CoLM

Challenges of coreset selection for training LLMs

1 Highly Imbalanced Language Data
2 Adam optimizer
3 Very Large Gradient Dimensionality

Figure: The number of samples from different data sources in MathInstruct.
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Coresets for Large Language Models Coresets for Large Language Models

CoLM

Coresets for Training LLMs (CoLM)

1 A balanced sampling strategy

2 Adam-like gradient normalization

3 Sparsified zeroth-order gradient estimation
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Coresets for Large Language Models Coresets for Large Language Models

Experimental results

CoLM yields the best of both worlds, increasing accuracy while reducing time & memory
consumption.

Figure: Time vs Accuracy vs Memory of fine-tuning Phi-2 with LoRA on MathInstruct.
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Coresets for Large Language Models Coresets for Large Language Models

Experimental results

CoLM improves the performance of different models and batch sizes.

Figure: a) CoLM with bs = 64 (from 128) outperforms fine-tuning different models with bs = 64 and bs =
128 by a large margin; (b) CoLM improves the performance of training with different batch sizes. The size
of each circle is proportional to the training time of the corresponding method. (c) CoLM reduces memory
consumption, with reduction increasing as the batch size grows.
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Challenges

1 Dynamic and Adaptive Coreset Selection

2 Automated and Multi-objective Coreset Optimization

3 Balancing Fidelity and Diversity

4 Scalability to Large-scale and Diverse Modalities

5 Ethical and Privacy Considerations
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